Advanced Linear Algebra (MA 409) Problem Sheet - 21

Invariant Subspaces and the Cayley Hamilton Theorem

- 1. Label the following statements as true or false.
 - (a) There exists a linear operator *T* with no *T*-invariant subspace.
 - (b) If *T* is a linear operator on a finite-dimensional vector space *V* and *W* is a *T*-invariant subspace of *V*, then the characteristic polynomial of T_W divides the characteristic polynomial of *T*.
 - (c) Let *T* be a linear operator on a finite-dimensional vector space *V*, and let *v* and *w* be in *V*. If *W* is the *T*-cyclic subspace generated by *v*, *W'* is the *T*-cyclic subspace generated by *w*, and *W* = *W'*, then *v* = *w*.
 - (d) If *T* is a linear operator on a finite-dimensional vector space *V*, then for any $v \in V$ the *T*-cyclic subspace generated by *v* is the same as the *T*-cyclic subspace generated by T(v).
 - (e) Let *T* be a linear operator on an *n*-dimensional vector space. Then there exists a polynomial g(t) of degree *n* such that $g(T) = T_0$.
 - (f) Any polynomial of degree *n* with leading coefficient $(-1)^n$ is the characteristic polynomial of some linear operator.
 - (g) If *T* is a linear operator on a finite-dimensional vector space *V*, and if *V* is the direct sum of *k T*-invariant subspaces, then there is an ordered basis β for *V* such that $[T]_{\beta}$ is a direct sum of *k* matrices.
- 2. For each of the following linear operators *T* on the vector space *V*, determine whether the given subspace *W* is a *T*-invariant subspace of *V*.
 - (a) $V = P_3(\mathbb{R}), T(f(x)) = f'(x), \text{ and } W = P_2(\mathbb{R})$
 - (b) $V = P(\mathbb{R}), T(f(x)) = xf(x), \text{ and } W = P_2(\mathbb{R})$
 - (c) $V = \mathbb{R}^3$, T(a, b, c) = (a + b + c, a + b + c, a + b + c), and $W = \{(t, t, t) : t \in \mathbb{R}\}$

(d)
$$V = C([0,1]), T(f(t)) = \left[\int_0^1 f(x) \, dx\right]t$$
, and
 $W = \{f \in V : f(t) = at + b \text{ for some } a \text{ and } b\}$

(e)
$$V = M_{2 \times 2}(\mathbb{R}), T(A) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} A$$
, and $W = \{A \in V : A^t = A\}$

- 3. Let *T* be a linear operator on a finite-dimensional vector space *V*. Prove that the following subspaces are *T*-invariant.
 - (a) $\{0\}$ and V
 - (b) N(T) and R(T)
 - (c) E_{λ} , for any eigenvalue λ of T

- 4. Let *T* be a linear operator on a vector space *V*, and let *W* be a *T*-invariant subspace of *V*. Prove that *W* is g(T)-invariant for any polynomial g(t).
- 5. Let *T* be a linear operator on a vector space *V*. Prove that the intersection of any collection of *T*-invariant subspaces of *V* is a *T*-invariant subspace of *V*.
- 6. For each linear operator *T* on the vector space *V*, find an ordered basis for the *T*-cyclic subspace *W* generated by the vector *z*.
 - (a) $V = \mathbb{R}^4$, T(a, b, c, d) = (a + b, b c, a + c, a + d), and $z = e_1$.
 - (b) $V = P_3(\mathbb{R}), T(f(x)) = f''(x)$, and $z = x^3$.

(c)
$$V = M_{2 \times 2}(\mathbb{R}), T(A) = A^t$$
, and $z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

- (d) $V = M_{2 \times 2}(\mathbb{R}), T(A) = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} A$, and $z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
- 7. Prove that the restriction of a linear operator *T* to a *T*-invariant subspace is a linear operator on that subspace.
- 8. Let *T* be a linear operator on a vector space with a *T*-invariant subspace *W*. Prove that if *v* is an eigenvector of T_W with corresponding eigenvalue λ , then the same is true for *T*.
- 9. For each linear operator T and cyclic subspace W in Exercise 6, compute the characteristic polynomial of T_W in two ways, as in Example 6.
- 10. For each linear operator in Exercise 6, find the characteristic polynomial f(t) of T, and verify that the characteristic polynomial of T_W (computed in Exercise 9) divides f(t).
- 11. Let *T* be a linear operator on a vector space *V*, let *v* be a nonzero vector in *V*, and let *W* be the *T*-cyclic subspace of *V* generated by *v*. Prove that
 - (a) *W* is *T*-invariant.
 - (b) Any *T*-invariant subspace of *V* containing *v* also contains *W*.
- 12. Let *T* be a linear operator on a vector space *V*, let *v* be a nonzero vector in *V*, and let *W* be the *T*-cyclic subspace of *V* generated by *v*. For any $w \in V$, prove that $w \in W$ if and only if there exists a polynomial g(t) such that w = g(T)(v).
- 13. Prove that the polynomial g(t) of Exercise 12 can always be chosen so that its degree is less than $\dim(W)$.
- 14. Use the Cayley-Hamilton theorem to prove "Cayley-Hamilton Theorem for matrices": Let *A* be a $n \times n$ matrix, and let f(t) bt the characteristic polynomial of *A*. Then f(A) = O, the $n \times n$ zero matrix.

Warning : If $f(t) = \det(A - tI)$ is the characteristic polynomial of *A*, it is tempting to "prove" that f(A) = O by saying " $f(A) = \det(A - AI) = \det(O) = 0$." But this argument is nonsense. Why?

- 15. Let *T* be a linear operator on a finite-dimensional vector space *V*.
 - (a) Prove that if the characteristic polynomial of *T* splits, then so does the characteristic polynomial of the restriction of *T* to any *T*-invariant subspace of *V*.
 - (b) Deduce that if the characteristic polynomial of *T* splits, then any nontrivial *T*-invariant subspace of *V* contains an eigenvector of *T*.

16. Let *A* be an $n \times n$ matrix. Prove that

$$\dim(span(\{I_n, A, A^2, \ldots\})) \leq n.$$

17. Let *A* be an $n \times n$ matrix with characteristic polynomial

$$f(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0.$$

- (a) Prove that *A* is invertible if and only if $a_0 \neq 0$.
- (b) Prove that if *A* is invertible, then

$$A^{-1} = (-1/a_0)[(-1)^n A^{n-1} + a_{n-1}A^{n-2} + \dots + a_1I_n].$$

(c) Use (b) to compute A^{-1} for

$$A = \left(\begin{array}{rrrr} 1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{array}\right)$$

18. Let *A* denote the $k \times k$ matrix

/0	0	• • •	0	$-a_0$	
1	0	• • •	0	$-a_1$	
0	1	•••	0	$-a_{2}$	
÷	÷		÷	:	,
0	0	•••	0	$-a_{k-2}$	
0	0	• • •	1	$-a_{k-1}$	

where $a_0, a_1, \ldots, a_{k-1}$ are arbitrary scalars. Prove that the characteristic polynomial of *A* is

$$(-1)^k(a_0+a_1t+\cdots+a_{k-1}t^{k-1}+t^k).$$

Hint: Use mathematical induction on *k*, expanding the determinant along the first row.

19. Let *T* be a linear operator on a vector space *V*, and suppose that *V* is a *T*-cyclic subspace of itself. Prove that if *U* is a linear operator on *V*, then UT = TU if and only if U = g(T) for some polynomial g(t).

Hint: Suppose that *V* is generated by *v*. Choose g(t) according to Exercise 12 so that g(T)(v) = U(v).

- 20. Let *T* be a linear operator on a two-dimensional vector space *V*. Prove that either *V* is a *T*-cyclic subspace of itself or T = cI for some scalar *c*.
- 21. Let *T* be a linear operator on a two-dimensional vector space *V* and suppose that $T \neq cI$ for any scalar *c*. Show that if *U* is any linear operator on *V* such that UT = TU, then U = g(T) for some polynomial g(t).
- 22. Let *T* be a linear operator on a finite-dimensional vector space *V*, and let *W* be a *T*-invariant subspace of *V*. Suppose that $v_1, v_2, ..., v_k$ are eigenvectors of *T* corresponding to distinct eigenvalues. Prove that if $v_1 + v_2 + \cdots + v_k$ is in *W*, then $v_i \in W$ for all *i*.

Hint: Use mathematical induction on *k*.

23. Prove that the restriction of a diagonalizable linear operator *T* to any nontrivial *T*-invariant subspace is also diagonalizable.

Hint: Use the result of Exercise 22.

24. (a) Recall that if *T* and *U* are simultaneously diagonalizable operators, then *T* and *U* commute (i.e., TU = UT). Prove the converse of the above statment that if *T* and *U* are diagonalizable linear operators on a finite-dimensional vector space *V* such that UT = TU, then *T* and *U* are simultaneously diagonalizable.

Hint: For any eigenvalue λ of *T*, show that E_{λ} is *U*-invariant, and apply Exercise 23 to obtain a basis for E_{λ} of eigenvectors of *U*.

- (b) Recall that that if *A* and *B* are simultaneously diagonalizable matrices, then *A* and *B* commute. State and prove a matrix version of (a).
- 25. Let *T* be a linear operator on an *n*-dimensional vector space *V* such that *T* has *n* distinct eigenvalues. Prove that *V* is a *T*-cyclic subspace of itself.

Hint: Use Exercise 22 to find a vector v such that $\{v, T(v), \ldots, T^{n-1}(v)\}$ is linearly independent.

For the purposes of Exercises 26 through 31, T is a fixed linear operator on a finite-dimensional vector space V, and W is a nonzero T-invariant subspace of V. We require the following definition.

Definition. Let *T* be a linear operator on a vector space *V*, and let *W* be a *T*-invariant subspace of *V*. Define $\overline{T} : V/W \to V/W$ by

$$\overline{T}(v+W) = T(v) + W$$
 for any $v+W \in V/W$.

- 26. (a) Prove that \overline{T} is well defined. That is, show that $\overline{T}(v+W) = \overline{T}(v'+W)$ whenever v+W = v'+W.
 - (b) Prove that \overline{T} is a linear operator on V/W.
 - (c) Let $\eta : V \to V/W$ be the linear transformation defined by $\eta(v) = v + W$. Show that the diagram of the following Figure commutes ; that is, prove that $\eta T = \overline{T}\eta$. (This exercise does not require the assumption that *V* is finite-dimensional.)

27. Let f(t), g(t), and h(t) be the characteristic polynomials of T, T_W , and \overline{T} , respectively. Prove that f(t) = g(t)h(t).

Hint: Extend an ordered basis $\gamma = \{v_1, v_2, \dots, v_k\}$ for W to an ordered basis

$$\beta = \{v_1, v_2, \ldots, v_k, v_{k+1}, \ldots, v_n\}$$

for *V*. Then show that the collection of cosets $\alpha = \{v_{k+1} + W, v_{k+2} + W, \dots, v_n + W\}$ is an ordered basis for *V*/*W*, and prove that

$$[T]_{\beta} = \begin{pmatrix} B_1 & B_2 \\ O & B_3 \end{pmatrix},$$

where $B_1 = [T]_{\gamma}$ and $B_3 = [\overline{T}]_{\alpha}$

- 28. Use the hint in Exercise 27 to prove that if *T* is diagonalizable, then so is \overline{T} .
- 29. Prove that if both T_W and \overline{T} are diagonalizable and have no common eigenvalues, then T is diagonalizable.

30. Let $A = \begin{pmatrix} 1 & 1 & -3 \\ 2 & 3 & 4 \\ 1 & 2 & 1 \end{pmatrix}$, let $T = L_A$, and let W be the cyclic subspace of \mathbb{R}^3 generated by e_1 .

- (a) Compute the characteristic polynomial of T_W .
- (b) Show that $\{e_2 + W\}$ is a basis for \mathbb{R}^3/W , and use this fact to compute the characteristic polynomial of \overline{T} .
- (c) Use the results of (a) and (b) to find the characteristic polynomial of *A*.
- 31. Recall that if *T* is a operator on a finite-dimensional vector space *V*, and suppose there exists an ordered basis β for *V* such that $[T]_{\beta}$ is an upper triangular matrix, then the characteristic polynomial for *T* splits. Prove the converse of the above statement that if the characteristic polynomial of *T* splits, then there is an ordered basis β for *V* such that $[T]_{\beta}$ is an upper triangular matrix.

Hints: Apply mathematical induction to dim(*V*). First prove that *T* has an eigenvector *v*. let $W = span(\{v\})$, and apply the induction hypothesis to $\overline{T} : V/W \to V/W$.

Exercises 32 through 39 are concerned with direct sums.

- 32. Let *T* be a linear operator on a vector space *V*, and let $W_1, W_2, ..., W_k$ be *T*-invariant subspaces of *V*. Prove that $W_1 + W_2 + \cdots + W_k$ is also a *T*-invariant subspace of *V*.
- 33. Let *T* be a linear operator on a finite-dimensional vector space *V*, and let W_1, W_2, \ldots, W_k be *T*-invariant subspaces of *V* such that $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$. For each *i*, let β_i be an ordered basis for W_i , and let $\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$. Let $A = [T]_\beta$ and $B_i = [T_{W_i}]_{\beta_i}$, for $i = 1, 2, \ldots, k$. Then prove that $A = B_1 \oplus B_2 \oplus \cdots \oplus B_k$.

Hint : Give a direct proof for the case k = 2 and extend it using mathematical induction on k, the number of subspaces.

- 34. Let *T* be a linear operator on a finite-dimensional vector space *V*. Prove that *T* is diagonalizable if and only if *V* is the direct sum of one-dimensional *T*-invariant subspaces.
- 35. Let *T* be a linear operator on a finite-dimensional vector space *V*, and let $W_1, W_2, ..., W_k$ be *T*-invariant subspaces of *V* such that $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$. Prove that

$$\det(T) = \det(T_{W_1}) \det(T_{W_2}) \cdots \det(T_{W_k}).$$

- 36. Let *T* be a linear operator on a finite-dimensional vector space *V*, and let W_1, W_2, \ldots, W_k be *T*-invariant subspaces of *V* such that $V = W_1 \oplus W_2 \oplus \ldots \oplus W_k$. Prove that *T* is diagonalizable if and only if T_W , is diagonalizable for all *i*.
- 37. Let C be a collection of diagonalizable linear operators on a finite dimensional vector space V. Prove that there is an ordered basis β such that $[T]_{\beta}$ is a diagonal matrix for all $T \in C$ if and only if the operators of C commute under composition. (This is an extension of Exercise 24.)

Hints for the case that the operators commute: The result is trivial if each operator has only one eigenvalue. Otherwise, establish the general result by mathematical induction on dim(V), using the fact that V is the direct sum of the eigenspaces of some operator in C that has more than one eigenvalue.

- 38. Let $B_1, B_2, ..., B_k$ be square matrices with entries in the same field, and let $A = B_1 \oplus B_2 \oplus \cdots \oplus B_k$. Prove that the characteristic polynomial of A is the product of the characteristic polynomials of the B_i 's.
- 39. Let

$$A = \begin{pmatrix} 1 & 2 & \cdots & n \\ n+1 & n+2 & \cdots & 2n \\ \vdots & \vdots & & \vdots \\ n^2 - n+1 & n^2 - n+2 & \cdots & n^2 \end{pmatrix}.$$

Find the characteristic polynomial of *A*.

Hint: First prove that *A* has rank 2 and that $span(\{(1,1,\ldots,1),(1,2,\ldots,n)\})$ is L_A -invariant.

40. Let $A \in M_{n \times n}(\mathbb{R})$ be the matrix defined by $A_{ij} = 1$ for all *i* and *j*. Find the characteristic polynomial of *A*.

```
****
```