Advanced Linear Algebra (MA 409) Problem Sheet - 21

Invariant Subspaces and the Cayley Hamilton Theorem

- 1. Label the following statements as true or false.
	- (a) There exists a linear operator *T* with no *T*-invariant subspace.
	- (b) If *T* is a linear operator on a finite-dimensional vector space *V* and *W* is a *T*-invariant subspace of *V*, then the characteristic polynomial of T_W divides the characteristic polynomial of *T*.
	- (c) Let *T* be a linear operator on a finite-dimensional vector space *V*, and let *v* and *w* be in *V*. If *W* is the *T*-cyclic subspace generated by v , *W'* is the *T*-cyclic subspace generated by w , and $W = W'$, then $v = w$.
	- (d) If *T* is a linear operator on a finite-dimensional vector space *V*, then for any $v \in V$ the *T*-cyclic subspace generated by *v* is the same as the *T*-cyclic subspace generated by *T*(*v*).
	- (e) Let *T* be a linear operator on an *n*-dimensional vector space. Then there exists a polynomial *g*(*t*) of degree *n* such that *g*(*T*) = *T*₀.
	- (f) Any polynomial of degree *n* with leading coefficient (−1) *n* is the characteristic polynomial of some linear operator.
	- (g) If *T* is a linear operator on a finite-dimensional vector space *V*, and if *V* is the direct sum of *k* T-invariant subspaces, then there is an ordered basis β for *V* such that $[T]_B$ is a direct sum of *k* matrices.
- 2. For each of the following linear operators *T* on the vector space *V*, determine whether the given subspace *W* is a *T*-invariant subspace of *V*.
	- (a) $V = P_3(\mathbb{R})$, $T(f(x)) = f'(x)$, and $W = P_2(\mathbb{R})$
	- (b) $V = P(\mathbb{R})$, $T(f(x)) = xf(x)$, and $W = P_2(\mathbb{R})$
	- (c) $V = \mathbb{R}^3$, $T(a, b, c) = (a + b + c, a + b + c, a + b + c)$, and *W* = {(*t*, *t*, *t*) : *t* ∈ **R**}

(d)
$$
V = C([0,1]), T(f(t)) = \left[\int_0^1 f(x) dx\right]t
$$
, and
\n $W = \{f \in V : f(t) = at + b \text{ for some } a \text{ and } b\}$

(e)
$$
V = M_{2 \times 2}(\mathbb{R})
$$
, $T(A) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} A$, and $W = \{A \in V : A^t = A\}$

- 3. Let *T* be a linear operator on a finite-dimensional vector space *V*. Prove that the following subspaces are *T*-invariant.
	- (a) {0} and *V*
	- (b) *N*(*T*) and *R*(*T*)
	- (c) E_λ , for any eigenvalue λ of *T*
- 4. Let *T* be a linear operator on a vector space *V*, and let *W* be a *T*-invariant subspace of *V*. Prove that *W* is $g(T)$ -invariant for any polynomial $g(t)$.
- 5. Let *T* be a linear operator on a vector space *V*. Prove that the intersection of any collection of *T*-invariant subspaces of *V* is a *T*-invariant subspace of *V*.
- 6. For each linear operator *T* on the vector space *V*, find an ordered basis for the *T*-cyclic subspace *W* generated by the vector *z*.
	- (a) $V = \mathbb{R}^4$, $T(a, b, c, d) = (a + b, b c, a + c, a + d)$, and $z = e_1$. (b) $V = P_3(\mathbb{R})$, $T(f(x)) = f''(x)$, and $z = x^3$. (c) $V = M_{2 \times 2}(\mathbb{R})$, $T(A) = A^t$, and $z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. (d) $V = M_{2 \times 2}(\mathbb{R})$, $T(A) = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} A$, and $z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
- 7. Prove that the restriction of a linear operator *T* to a *T*-invariant subspace is a linear operator on that subspace.
- 8. Let *T* be a linear operator on a vector space with a *T*-invariant subspace *W*. Prove that if *v* is an eigenvector of T_W with corresponding eigenvalue λ , then the same is true for *T*.
- 9. For each linear operator *T* and cyclic subspace *W* in Exercise 6, compute the characteristic polynomial of T_W in two ways, as in Example 6.
- 10. For each linear operator in Exercise 6, find the characteristic polynomial *f*(*t*) of *T*, and verify that the characteristic polynomial of T_W (computed in Exercise 9) divides $f(t)$.
- 11. Let *T* be a linear operator on a vector space *V*, let *v* be a nonzero vector in *V*, and let *W* be the *T*-cyclic subspace of *V* generated by *v*. Prove that
	- (a) *W* is *T*-invariant.
	- (b) Any *T*-invariant subspace of *V* containing *v* also contains *W*.
- 12. Let *T* be a linear operator on a vector space *V*, let *v* be a nonzero vector in *V*, and let *W* be the *T*-cyclic subspace of *V* generated by *v*. For any $w \in V$, prove that $w \in W$ if and only if there exists a polynomial $g(t)$ such that $w = g(T)(v)$.
- 13. Prove that the polynomial $g(t)$ of Exercise 12 can always be chosen so that its degree is less than dim(*W*).
- 14. Use the Cayley-Hamilton theorem to prove "Cayley-Hamilton Theorem for matrices": Let *A* be a *n* \times *n* matrix, and let $f(t)$ bt the characteristic polynomial of *A*. Then $f(A) = O$, the *n* \times *n* zero matrix.

Warning : If $f(t) = det(A - tI)$ is the characteristic polynomial of A, it is tempting to "prove" that $f(A) = O$ by saying " $f(A) = det(A - AI) = det(O) = 0$." But this argument is nonsense. Why?

- 15. Let *T* be a linear operator on a finite-dimensional vector space *V*.
	- (a) Prove that if the characteristic polynomial of *T* splits, then so does the characteristic polynomial of the restriction of *T* to any *T*-invariant subspace of *V*.
	- (b) Deduce that if the characteristic polynomial of *T* splits, then any nontrivial *T*-invariant subspace of *V* contains an eigenvector of *T*.

16. Let *A* be an $n \times n$ matrix. Prove that

$$
\dim(\text{span}(\{I_n, A, A^2, \ldots\})) \leq n.
$$

17. Let *A* be an $n \times n$ matrix with characteristic polynomial

$$
f(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \cdots + a_1 t + a_0.
$$

- (a) Prove that *A* is invertible if and only if $a_0 \neq 0$.
- (b) Prove that if *A* is invertible, then

$$
A^{-1}=(-1/a_0)[(-1)^nA^{n-1}+a_{n-1}A^{n-2}+\cdots+a_1I_n].
$$

(c) Use (b) to compute A^{-1} for

$$
A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{array}\right).
$$

18. Let *A* denote the $k \times k$ matrix

where $a_0, a_1, \ldots, a_{k-1}$ are arbitrary scalars. Prove that the characteristic polynomial of *A* is

$$
(-1)^k (a_0 + a_1t + \cdots + a_{k-1}t^{k-1} + t^k).
$$

Hint: Use mathematical induction on *k*, expanding the determinant along the first row.

19. Let *T* be a linear operator on a vector space *V*, and suppose that *V* is a *T*-cyclic subspace of itself. Prove that if *U* is a linear operator on *V*, then $UT = TU$ if and only if $U = g(T)$ for some polynomial $g(t)$.

Hint: Suppose that *V* is generated by *v*. Choose $g(t)$ according to Exercise 12 so that $g(T)(v) =$ *U*(*v*).

- 20. Let *T* be a linear operator on a two-dimensional vector space *V*. Prove that either *V* is a *T*-cyclic subspace of itself or $T = cI$ for some scalar c .
- 21. Let *T* be a linear operator on a two-dimensional vector space *V* and suppose that $T \neq cI$ for any scalar *c*. Show that if *U* is any linear operator on *V* such that $UT = TU$, then $U = g(T)$ for some polynomial $g(t)$.
- 22. Let *T* be a linear operator on a finite-dimensional vector space *V*, and let *W* be a *T*-invariant subspace of *V*. Suppose that v_1, v_2, \ldots, v_k are eigenvectors of *T* corresponding to distinct eigenvalues. Prove that if $v_1 + v_2 + \cdots + v_k$ is in *W*, then $v_i \in W$ for all *i*.

Hint: Use mathematical induction on *k*.

23. Prove that the restriction of a diagonalizable linear operator *T* to any nontrivial *T*-invariant subspace is also diagonalizable.

Hint: Use the result of Exercise 22.

24. (a) Recall that if *T* and *U* are simultaneously diagonalizable operators, then *T* and *U* commute (i.e., $TU = UT$). Prove the converse of the above statment that if T and U are diagonalizable linear operators on a finite-dimensional vector space *V* such that *UT* = *TU*, then *T* and *U* are simultaneously diagonalizable.

Hint: For any eigenvalue λ of *T*, show that E_{λ} is *U*-invariant, and apply Exercise 23 to obtain a basis for *E^λ* of eigenvectors of *U*.

- (b) Recall that that if *A* and *B* are simultaneously diagonalizable matrices, then *A* and *B* commute. State and prove a matrix version of (a).
- 25. Let *T* be a linear operator on an *n*-dimensional vector space *V* such that *T* has *n* distinct eigenvalues. Prove that *V* is a *T*-cyclic subspace of itself.

Hint: Use Exercise 22 to find a vector *v* such that $\{v, T(v), \ldots, T^{n-1}(v)\}$ is linearly independent.

For the purposes of Exercises 26 through 31, T is a fixed linear operator on a finite-dimensional vector space V, and W is a nonzero T-invariant subspace of V. We require the following definition.

Definition. Let *T* be a linear operator on a vector space *V*, and let *W* be a *T*-invariant subspace of *V*. Define \overline{T} : $V/W \rightarrow V/W$ by

$$
\overline{T}(v+W) = T(v) + W \quad \text{for any} \quad v+W \in V/W.
$$

- 26. (a) Prove that \overline{T} is well defined. That is, show that $\overline{T}(v+W) = \overline{T}(v'+W)$ whenever $v+W =$ $v' + W$.
	- (b) Prove that \overline{T} is a linear operator on V/W .
	- (c) Let $\eta : V \to V/W$ be the linear transformation defined by $\eta(v) = v + W$. Show that the diagram of the following Figure commutes ; that is, prove that $\eta T = T\eta$. (This exercise does not require the assumption that *V* is finite-dimensional.)

27. Let $f(t)$, $g(t)$, and $h(t)$ be the characteristic polynomials of *T*, T_W , and \overline{T} , respectively. Prove that $f(t) = g(t)h(t)$.

Hint: Extend an ordered basis $\gamma = \{v_1, v_2, \dots, v_k\}$ for *W* to an ordered basis

$$
\beta = \{v_1, v_2, \ldots, v_k, v_{k+1}, \ldots, v_n\}
$$

for *V*. Then show that the collection of cosets $\alpha = \{v_{k+1} + W, v_{k+2} + W, \dots, v_n + W\}$ is an ordered basis for *V*/*W*, and prove that

$$
[T]_{\beta} = \begin{pmatrix} B_1 & B_2 \\ O & B_3 \end{pmatrix},
$$

where $B_1 = [T]_{\gamma}$ and $B_3 = [\overline{T}]_{\alpha}$

- 28. Use the hint in Exercise 27 to prove that if *T* is diagonalizable, then so is *T*.
- 29. Prove that if both T_W and \overline{T} are diagonalizable and have no common eigenvalues, then *T* is diagonalizable.

30. Let *A* = $\sqrt{ }$ $\overline{1}$ 1 1 −3 2 3 4 1 2 1 \setminus , let *T* = *L*_{*A*}, and let *W* be the cyclic subspace of \mathbb{R}^3 generated by e_1 .

- (a) Compute the characteristic polynomial of *TW*.
- (b) Show that $\{e_2 + W\}$ is a basis for \mathbb{R}^3/W , and use this fact to compute the characteristic polynomial of *T*.
- (c) Use the results of (a) and (b) to find the characteristic polynomial of *A*.
- 31. Recall that if *T* is a operator on a finite-dimensional vector space *V*, and suppose there exists an ordered basis *β* for *V* such that $[T]_β$ is an upper triangular matrix, then the characteristic polynomial for *T* splits. Prove the converse of the above statement that if the characteristic polynomial of *T* splits, then there is an ordered basis $β$ for *V* such that $[T]_β$ is an upper triangular matrix.

Hints: Apply mathematical induction to dim(*V*). First prove that *T* has an eigenvector *v*. let $W = span({v}$, and apply the induction hypothesis to \overline{T} : $V/W \rightarrow V/W$.

Exercises 32 through 39 are concerned with direct sums.

- 32. Let *T* be a linear operator on a vector space *V*, and let W_1, W_2, \ldots, W_k be *T*-invariant subspaces of *V*. Prove that $W_1 + W_2 + \cdots + W_k$ is also a *T*-invariant subspace of *V*.
- 33. Let *T* be a linear operator on a finite-dimensional vector space *V*, and let W_1, W_2, \ldots, W_k be *T*−invariant subspaces of *V* such that *V* = *W*¹ ⊕ *W*² ⊕ · · · ⊕ *W^k* . For each *i*, let *βⁱ* be an ordered basis for W_i , and let $\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$. Let $A = [T]_{\beta}$ and $B_i = [T_{W_i}]_{\beta_i}$, for $i = 1, 2, ..., k$. Then prove that $A = B_1 \oplus B_2 \oplus \cdots \oplus B_k$.

Hint : Give a direct proof for the case $k = 2$ and extend it using mathematical induction on k , the number of subspaces.

- 34. Let *T* be a linear operator on a finite-dimensional vector space *V*. Prove that *T* is diagonalizable if and only if *V* is the direct sum of one-dimensional *T*-invariant subspaces.
- 35. Let *T* be a linear operator on a finite-dimensional vector space *V*, and let W_1, W_2, \ldots, W_k be *T*-invariant subspaces of *V* such that $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$. Prove that

$$
\det(T) = \det(T_{W_1}) \det(T_{W_2}) \cdots \det(T_{W_k}).
$$

- 36. Let *T* be a linear operator on a finite-dimensional vector space *V*, and let W_1, W_2, \ldots, W_k be *T*invariant subspaces of *V* such that $V = W_1 \oplus W_2 \oplus \ldots \oplus W_k$. Prove that *T* is diagonalizable if and only if *TW*, is diagonalizable for all *i*.
- 37. Let C be a collection of diagonalizable linear operators on a finite dimensional vector space *V*. Prove that there is an ordered basis β such that $[T]_\beta$ is a diagonal matrix for all $T \in \mathcal{C}$ if and only if the operators of C commute under composition. (This is an extension of Exercise 24.)

Hints for the case that the operators commute: The result is trivial if each operator has only one eigenvalue. Otherwise, establish the general result by mathematical induction on dim(*V*), using the fact that *V* is the direct sum of the eigenspaces of some operator in C that has more than one eigenvalue.

- 38. Let B_1, B_2, \ldots, B_k be square matrices with entries in the same field, and let $A = B_1 \oplus B_2 \oplus \cdots \oplus$ *Bk* . Prove that the characteristic polynomial of *A* is the product of the characteristic polynomials of the B_i 's.
- 39. Let

$$
A = \begin{pmatrix} 1 & 2 & \cdots & n \\ n+1 & n+2 & \cdots & 2n \\ \vdots & \vdots & & \vdots \\ n^2 - n + 1 & n^2 - n + 2 & \cdots & n^2 \end{pmatrix}.
$$

Find the characteristic polynomial of *A*.

Hint: First prove that *A* has rank 2 and that $span({{(1,1,...,1),(1,2,...,n)}})$ is L_A -invariant.

40. Let $A \in M_{n \times n}(\mathbb{R})$ be the matrix defined by $A_{ij} = 1$ for all *i* and *j*. Find the characteristic polynomial of *A*.

```
*****
```